Formes biologiques sauvages

FOCUS
L 'info autrement...

Cet Univers galactique de 13 milliards d'années !

Dernière mise à jour : 13 juil.

La première photo de l'amas de galaxies SMACS 0723 qui a été choisie comme première image du Télescope spatial James Webb de la Nasa, a été diffusée lundi soir 11 juillet 2022, à 23h par le président des Etats-Unis en personne depuis la maison Blanche. Sur cette photo prise par le JWST, nous voyons beaucoup plus de choses comme le montre la comparaison ci-dessous. Les points brillants avec des croix sont des étoiles de notre galaxie. Ces « pics de lumière » sont dus à la configuration du miroir du télescope, segmenté en petits hexagones. Tout le reste, ce sont des galaxies.



Synthèse The Conversation, ''Sciences et avenir'' et ''Paris Match''


Certaines des galaxies visibles sur cette image sont à 13 milliards d’années-lumière. Cela veut dire que la lumière a mis 13 milliards d’années à voyager jusqu’à nous depuis qu’elle a été émise par la galaxie, signifiant que l’on voit l’univers tel qu’il était peu de temps après le Big Bang. Si cela a pu être possible avec Hubble, le télescope James-Webb dispose d’une bien meilleure résolution, permettant de déceler les formes des galaxies de manière beaucoup plus détaillée.


Ces galaxies sont de morphologies et de couleurs diverses. Les couleurs nous renseignent sur leurs distances, les plus éloignées étant celles à la longueur d’onde la plus grande, donc les plus rouges. Celles-ci sont aussi de formes plus simples, moins structurées, car elles sont plus « jeunes ». Les galaxies prennent des formes de plus en plus complexes au fur et à mesure qu’elles interagissent avec d’autres galaxies.


L’infrarouge pour comprendre la formation des galaxies


Une des grandes différences entre Hubble et le Webb est leur domaine spectral : Hubble voit principalement dans le visible tandis que le Webb est un télescope infrarouge. Les étoiles proches du Big Bang, bien que mortes depuis longtemps, ont émis un rayonnement ultraviolet. Leur éloignement, du fait de l’expansion de l’univers, décale leurs longueurs d’onde vers l’infrarouge.


Le Webb va aussi permettre d’observer la poussière d’étoiles. Cette substance existe sous deux formes : carbonée, semblable à de la suie, et sous forme de silicate, se rapprochant du sable. Elle se forme autour des étoiles en fin de vie, puis traverse le milieu interstellaire, finissant par former de nouvelles étoiles. Et à terme, de nouvelles galaxies.


Cette poussière a la propriété cruciale d’être visible dans l’infrarouge et opaque au visible, rendant impossible son analyse par Hubble. L’observation de la poussière par le Webb devrait permettre de mieux comprendre les mécanismes de formation des étoiles et des galaxies. Cela se fera notamment par l’observation de la nébuleuse de la Carène, la nébuleuse de l’anneau austral et le quintette de Stephan.


Enfin, les images du télescope Webb, accessibles librement pour les scientifiques et le grand public, vont permettre de scruter des exoplanètes et leur atmosphère. En effet, plusieurs molécules sont observables dans l’infrarouge – la molécule d’eau par exemple.

Avec la découverte des premières exoplanètes dans les années 90 un nouveau champ d’exploration de l’astrophysique moderne est apparu. Aujourd’hui, de nombreux projets ou instruments, que ce soit au sol ou dans l’espace, sont dédiés à l’étude de ces mondes orbitant autour d’autres étoiles que le Soleil.


L’instrument MIRI installé sur le télescope James-Webb permet de pointer directement certaines de ces exoplanètes connues afin d’analyser leur atmosphère. Que ce soit pour des exoplanètes en orbite très proche autour de leur étoile, ou bien celles évoluant à plusieurs dizaines d’unités astronomiques, la gamme spectrale couverte par MIRI est totalement inédite pour ces objets en astrophysique, et doit permettre d'atteindre des sensibilités inégalées.

En effet, l’infrarouge moyen est un domaine qui permet d’accéder à l’émission thermique des atmosphères d’exoplanètes qui contient des signatures moléculaires comme le méthane, l’ammoniac ou la vapeur d’eau pour les plus répandues, ce qui permet notamment de mieux comprendre la formation des exoplanè

Les exoplanètes, nouvelles frontières à explorer pour le télescope James-Webb


Avec la découverte des premières exoplanètes dans les années 90 un nouveau champ d’exploration de l’astrophysique moderne est apparu. Aujourd’hui, de nombreux projets ou instruments, que ce soit au sol ou dans l’espace, sont dédiés à l’étude de ces mondes orbitant autour d’autres étoiles que le Soleil.


L’instrument MIRI installé sur le télescope James-Webb permet de pointer directement certaines de ces exoplanètes connues afin d’analyser leur atmosphère. Que ce soit pour des exoplanètes en orbite très proche autour de leur étoile, ou bien celles évoluant à plusieurs dizaines d’unités astronomiques, la gamme spectrale couverte par MIRI est totalement inédite pour ces objets en astrophysique, et doit permettre d'atteindre des sensibilités inégalées.


En effet, l’infrarouge moyen est un domaine qui permet d’accéder à l’émission thermique des atmosphères d’exoplanètes qui contient des signatures moléculaires comme le méthane, l’ammoniac ou la vapeur d’eau pour les plus répandues, ce qui permet notamment de mieux comprendre la formation des exoplanètes.


Les exoplanètes, terra incognita du XXIᵉ siècle


La découverte de la première exoplanète autour d’une étoile de type solaire, a fait grand bruit dans la communauté scientifique. C’est un résultat qui était attendu depuis longtemps : l’existence des exoplanètes avait été formulée dès l’antiquité.


Après des années d'attente, cette première image montre des galaxies formées peu après le Big Bang, il y a plus de 13 milliards d'années. Cette première image scientifique et en couleur de James Webb marque un jour "historique", a salué le président Joe Biden lors de cet événement tenu à la Maison Blanche, six mois après le lancement en orb